Comparison of MDEQ CALPUFF Modeling System Inputs To Federal Recommendations and Three Other States. Highlighted MODEL SWITCH options note deviations from the Interagency Workgroup on Air Quality Modeling (IWAQM) recommended values. FLAG is the Federal Land Managers AQRV (Air Quality Related Values) Workgroup. The Montana Department of Environmental Quality (MDEQ) model switches are not finalized. Missing state switches were not provided in their respective BART modeling protocols. #### SOURCES: U.S. EPA. 1998. Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Report and Recommendations for Long-Range Transport Impacts. EPA-454/R-98-019. U.S. Environmental Protection Agency. Research Triangle Park, NC (http://www.epa.gov/ttn/scram/7thconf/calpuff/phase2.pdf#search='U.S.%20EPA.%2019 98.%20Interagency%20Workgroup%20on%20Air%20Quality%20Modeling%20%28IWAQM%29%20Phase%202%20Report%20and%20Recommendations%20for%20LongRange%20Transport%20Impacts). Federal Land Managers' Air Quality Related Values Workgroup (FLAG) Phase I Report (December 2000). U.S. Forest Service – Air Quality Program. National Park Service – Air Resources Division. U.S. Fish And Park Service – Air Quality Branch (http://www2.nature.nps.gov/air/Pubs/pdf/flag/FlagFinal.pdf#search='Federal%20Land%20Managers%20AQRV). CALMET/CALPUFF BART Protocol for Class I Federal Area Individual Source Attribution Visibility Impairment Modeling Analysis. October 24, 2005. Colorado Department of Public Health and Environment Air Pollution Control Division Technical Services Program 4300 Cherry Creek Drive South Denver, Colorado 80246 (http://apcd.state.co.us/documents/Colorado-subject-to-BART-CALPUFFprotocol.pdf) Best Available Retrofit Technology (BART) Modeling Protocol to Determine Sources Subject-to-BART in the State of Minnesota. Final March 2006. Minnesota Pollution Control Agency. 520 Lafayette Road North. St. Paul, Minnesota 55155-4194 (http://www.pca.state.mn.us/publications/aq-sip2-05.pdf). Protocol for BART-Related Visibility Impairment Modeling Analyses in North Dakota (Draft) October 26, 2005. North Dakota Department of Health Division of Air Quality 1200 Missouri Avenue Bismarck, ND 58506 (http://www.westar.org/Committees/TDocs/ND%20BART%20Protocol.pdf) **Table 1. CALMET Inputs.** | | ALMET Inputs. | IWAQM | MDEQ | | | | | |--------------------|--|------------------------------------|--|------|--|--|---| | CALMET
Variable | Description | Recommended
Value
or Default | Value
To Be
Used | FLAG | Colorado | Minnesota | North
Dakota | | PMAP | Map Projection | LCC | LCC | | Same
as
MDEQ | Same as
MDEQ | Same
as
MDEQ | | FEAST | False Easting (if PMAP = TTM, LCC or LAZA) (km) {inconsequential} | 0 | 600 | | | 0 | 0 | | DATUM | Datum region for output coordinates | WGS-G | WGS-G | | NAS-C | Same as
MDEQ | NWS-
27 | | NX | Number of east-
west grid cells | <= 190 | To be determined, but <= 190 | | 120 | 171 | 213 | | NY | Number of north-
south grid cells | <= 135 | To be determined, but <= 135 | | 121 | 165 | 153 | | DGRIDKM | Grid spacing (km) | <= 12 | 6 | | 4 | 12 | 3 | | NZ | Number of vertical layers | >= 4 | 10
(will vary) | | 11 | 12 | 12 | | ZFACE | Vertical cell face
heights
(NZ + 1 values) | User Defined | 0., 20., 40.,
80., 160.,
300., 600.,
1000.,
2200.,
3000.
(will vary
with met
year) | | 0, 20,
100,
200,
350,
500,
750,
1000,
2000,
3000,
4000,
5000 | 0, 20, 40,
73, 146,
369, 598,
1071,
1569,
2095,
2462,
2942,
3448 | 0, 20,
50,
90,
140,
200,
270,
370,
500,
1000,
1700,
2500,
4200 | | NOOBS | No Observation Mode (0 = use surface, and upper air stations; 1 = use MM5 data) | 0 | 0 | | Same
as
MDEQ | 1 | Same
as
MDEQ | | NSSTA | Number of stations in SURF.DAT file | >= 1 | Will vary
with
met year | | 11 | None | | | NPSTA | Number of stations in PRECIP.DAT file | >= 1 | Will vary
with
met year | | 86 | None | | | ICLOUD | Is cloud data to be input as gridded fields? (0 = no) {As recommended by Kevin Golden, EPA Region VIII, 1/17/06} | 0 | 0 | | Same
as
MDEQ | 3
(gridded
cloud
cover from
prognostic.
rel. hum.) | 3 | | IWFCOD | Generate winds by diagnostic wind module? (1 = yes) | 1 | 1 | | Same
as
MDEQ | Same as
MDEQ | | | CALMET
Variable | Description | IWAQM
Recommended
Value
or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minnesota | North
Dakota | |--------------------|---|---|--------------------------------|------|--------------------|---------------------|--------------------| | IFRADJ | Adjust winds using Froude number effects? (1 = yes) | 1 | 1 | | Same
as
MDEQ | Same as
MDEQ | | | IKINE | Adjust winds using kinematic effects? (0 = no) | 0 | 0 | | Same
as
MDEQ | 1 | | | IOBR | Use O'Brien procedure for vertical winds? (0 = no) | 0 | 0 | | Same
as
MDEQ | Same as
MDEQ | | | ISLOPE | Compute slope flows? (1 = yes) | 1 | 1 | | Same
as
MDEQ | Same as
MDEQ | | | IEXTRP | Extrapolate surface winds to upper layers (-4 = use similarity theory and ignore layer 1 of upper air station data) | -4 | -4 | | Same
as
MDEQ | -1
(No) | | | ICALM | Extrapolate surface calms to upper layers? (0 = no) | 0 | 0 | | Same
as
MDEQ | Same as
MDEQ | | | BIAS | Surface/upper-air
weighting factors
(NZ values;
IWAQM: NZ*0)
other options were
not available) | -1,
(NZ-1) * 0 | -1,
(NZ-1) * 0 | | NZ*0 | NZ*0 | | | IPROG | Using prognostic or
MM-FDDA data?
(Use MM4/5 as
initial guess wind) | MM4 or MM5 | MM5 = 14 | | Same
as
MDEQ | Same as
MDEQ | Same
as
MDEQ | | ISTEPPG | Timestep (hours) of
the prognostic
model input data | 1 | 1 | | | Same as
MDEQ | | | LVARY | Use varying radius to develop surface winds? | F | F | | | Same as
MDEQ | | | RMAX1 | Maximum surface over land extrapolation radius (km) | No Default | 30 | | Same
as
MDEQ | 30
(Not Used) | 100 | | RMAX2 | Maximum aloft over land extrapolation radius (km) | No Default | 100 | | Same
as
MDEQ | 30
(Not Used) | 200 | | RMAX3 | Maximum over water extrapolation radius (km) | No Default | 5 | | 500 | 50
(Not Used) | 200 | | RMIN | Minimum
extrapolation radius
(km) | 0.1 | 0.1 | | Same
as
MDEQ | Not Used | | | RMIN2 | Distance (km) around an upper air site where vertical extrapolation is excluded {set to -1 if IEXTRP = ± 4} | 4 | -1
(No) | | 4 | -1
(Not
Used0 | | | CALMET
Variable | Description | IWAQM
Recommended
Value | MDEQ
Value
To Be | FLAG | Colorado | Minnesota | North
Dakota | |--------------------|---|-------------------------------|------------------------|------|--------------------|-----------------|-----------------| | variable | | value
or Default | Used | | | | Dakota | | TERRAD | Radius of influence
of terrain features
(km)
{evaluated by Kevin
Golden, EPA
Region VIII,
1/17/06} | No Default | 80 | | 40 | 12 | 10 | | R1 | Relative weight at surface of Step 1 field and observation (km) {evaluated by Kevin Golden, EPA Region VIII, 1/17/06} | No Default | 30 | | Same
as
MDEQ | 1
(Not Used) | 10 | | R2 | Relative weight aloft of Step 1 field and observation (km) {evaluated by Kevin Golden, EPA Region VIII, 1/17/06} | No Default | 50 | | Same
as
MDEQ | 1
(Not Used) | 10 | | RPROG | Relative weighting
parameter of the
prognostic
wind field data
(km) | 0 | 0 | | | 0.1 | | | DIVLIM | Maximum acceptable divergence | 5.0 E-6 | 5.0 E-6 | | | Same as
MDEQ | | | NITER | Max number of passes in divergence minimization | 50 | 50 | | | Same as
MDEQ | | | NSMTH | Number of passes
in Smoothing
(NZ values) | 2, 4*(NZ-1) | 2, 4*(NZ-1) | | | Same as
MDEQ | | | NINTR2 | Max number of stations for interpolations (NZ values) | NZ *99 | NZ *99 | | | Same as
MDEQ | | | CRITFN | Critical Froude number | 1.0 | 1.0 | | | Same as
MDEQ | | | ALPHA | Empirical factor triggering kinematic effects | 0.1 | 0.1 | | | Same as
MDEQ | | | FEXTR2 | Multiplicative scaling factor for extrapolation of surface observations to upper layers | NZ*0.0 | NZ*0.0 | | | Same as
MDEQ | | | NBAR | Number of barriers
to interpolation of
the wind fields
(other variables
if NBAR>0) | 0 | 0 | | | Same as
MDEQ | | 4 | CALMET
Variable | Description | IWAQM
Recommended
Value
or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minnesota | North
Dakota | |--------------------|--|---|--------------------------------|------|----------|-----------------|-----------------| | IDIOPT1 | Compute temperature from observations (0 = true) | 0 | 0 | | | Same as
MDEQ | | | ISURFT | Surface station to use for surface temperature (between 1 and NSSTA) | No Default | Will vary
with met
year | | | Not Used | | | IDIOPT2 | Compute domain-
average lapse
rates? (0 = true) | 0 | 0 | | | Same as
MDEQ | | | IUPT | Station for lapse
rates
(between 1
and NUSTA) | User Defined | Will vary
with met
year | | | Not Used | 1 | | ZUPT | Depth of domain-
average lapse rate
(m) | 200. | 200. | | | Same as
MDEQ | | | IDIOPT3 | Compute internally initial guess winds? (0 = true) | 0 | 0 | | | Same as
MDEQ | | | IUPWND | Upper air station for domain winds (-1 = 1/r ² interpolation of all stations) | -1 | -1 | | | Same as
MDEQ | | | ZUPWND | Bottom, top of layer
For 1 st guess winds
(m) | 1, 1000 | 1, 1000 | | | Same as
MDEQ | 1,
2500 | | IDIOPT4 | Read surface winds
from SURF.DAT?
(0 = true) | 0 | 0 | | | Same as
MDEQ | | | IDIOPT5 | Read aloft winds
from UPN.DAT?
(0 = true) | 0 | 0 | | | Same as
MDEQ | | | LLBREZE | Use lake breeze module? | F | F | | | Same as
MDEQ | | | CONSTB | Neutral mixing height B constant | 1.41 | 1.41 | | | Same as
MDEQ | | | CONSTE | Convective mixing height E constant | 0.15 | 0.15 | | | Same as
MDEQ | | | CONSTN | Stable mixing height N constant | 2400 | 2400 | | | Same as
MDEQ | | | CONSTW | Over water mixing height W constant | 0.16 | 0.16 | | | Same as
MDEQ | | | FCORIOL | Absolute value of Coriolis parameter | 1.0 E-4 | 1.0 E-4 | | | Same as
MDEQ | | | IAVEXZI | Spatial averaging of mixing heights? (1 = true) | 1 | 1 | | | Same as
MDEQ | | | CALMET
Variable | Description | IWAQM
Recommended
Value
or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minnesota | North
Dakota | |--------------------|---|---|--------------------------------|------|--------------------|-----------------|--------------------| | MNMDAV | Max averaging radius (number of grid cells) | 1 | 1 | | | Same as
MDEQ | 7 | | HAFANG | Half-angle for looking upwind (degrees) | 30 | 30 | | | Same as
MDEQ | | | ILEVZI | Layer to use in upwind averaging (between 1 and NZ) {MDEQ professional judgement} | 1 | 3 | | | 1 | Same
as
MDEQ | | DPTMIN | Minimum capping potential temperature lapse rate | 0.001 | 0.001 | | | | | | DZZI | Depth for computing capping lapse rate (m) | 200 | 200 | | | | | | ZIMIN | Minimum over land mixing height (m) | 50 | 50 | | Sam as
MDEQ | | | | ZIMAX | Maximum over land mixing height (m) {MDEQ professional judgement} | 3000 | 2800 | | 4500 | 3448 | 4000 | | ZIMINW | Minimum over
water mixing height
(m) | 50 | 50 | | | | | | ZIMAXW | Maximum over water mixing height (m) {MDEQ professional judgement} | 3000 | 2800 | | | | 4000 | | ITPROG | 3D temperature
from observations
or from prognostic
data? | 0 | 0 | | | 2
(No) | | | IRAD | Form of temperature interpolation (1 = 1/r) | 1 | 1 | | Same
as
MDEQ | Same as
MDEQ | | | TRADKM | Radius of temperature interpolation (km) | 500 | 500 | | Same
as
MDEQ | 36 | | | NUMTS | Max number of stations in temperature interpolations | 5 | 5 | | _ | Same as
MDEQ | | | IAVET | Conduct spatial averaging of temperature? (1 = true) | 1 | 1 | | | Same as
MDEQ | | | TGDEFB | Default temperature
gradient below the
mixing height
over water
(K/m) | -0.0098 | -0.0098 | | | Same as
MDEQ | | | CALMET
Variable | Description | IWAQM
Recommended
Value
or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minnesota | North
Dakota | |--------------------|--|---|--------------------------------|------|----------|-----------------|-----------------| | TGDEFA | Default temperature
gradient above the
mixing height
over water
(K/m) | -0.0045 | -0.0045 | | | Same as
MDEQ | | | JWAT1 | Beginning (JWAT1)
and ending
(JWAT2) land use | 999 | 999 | | | 55 | | | JWAT2 | categories for
temperature
interpolation over
water (bigger than
largest land use
to disable) | 999 | 999 | | | 55 | | | NFLAGP | Method for precipitation interpolation $(2 = 1/r^2)$ | 2 | 2 | | | 2 | | | SIGMAP | Precipitation radius for interpolation (km) | 100.0 | 100.0 | | | 50.0 | | | CUTP | Minimum cut off precipitation rate (mm/hr) | 0.01 | 0.01 | | | Same as
MDEQ | | | JSUP | PG Stability class above mixed layer | 5 | 5 | | | | | Table 2. CALPUFF Inputs. | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|--|---|-----------------------------|------|-----------------|-----------------|-----------------| | NSPEC | Number of
species modeled
(for MESOPUFF II
chemistry) | 5 | Will vary
with source | | 7 | 7 | 7 | | NSE | Number of species emitted | 3 | Will vary
with source | | 5 | 4 | 4 | | ITEST | Flag to stop run
after S
ETUP phase
(1 = stop,
2 = continue) | 2 | 2 | | | | | | NRESPD | Number of periods
in Restart
output cycle | 0 | 0 | | | | | | MGAUSS | Near-field vertical distribution (1 = Gaussian) | 1 | 1 | | Same as
MDEQ | Same as
MDEQ | | | MCTADJ | Terrain adjustments to plume path (3 = partial plume path adjustment) | 3 | 3 | | Same as
MDEQ | Same as
MDEQ | | | MCTSG | Subgrid-scale
complex terrain
(0 = not modeled,
1 = modeled) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|--|---|-----------------------------|-----------------|-----------------|-----------------|--------------------| | MSLUG | Near-field puffs
modeled
as elongated
(0 = no, 1 = slugs
modeled) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MTRANS | Model transitional plume rise? (1 = yes) | 1 | 1 | | Same as
MDEQ | Same as
MDEQ | | | MTIP | Treat stack tip
downwash?
(1 = yes) | 1 | 1 | | Same as
MDEQ | Same as
MDEQ | | | MBDW | Method used to simulate building downwash (1 = ISC, 2 = PRIME) {building downwash not considered} | 2 | Not Used | | | IWAQM | | | MSHEAR | Vertical wind
shear modeled
above stack top
(0 = no, 1 = yes) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MSPLIT | Allow puffs to
split?
(0 = no, 1 = yes)
{As recommended
by EPA Region
VIII, Kevin
Golden, 2/23/06} | 0 | 1 | | 0 | IWAQM | Same
as
MDEQ | | MCHEM | Chemical
mechanism flag
(1 = MESOPUFF
II chemistry) | 1 | 1 | Same as
MDEQ | Same as
MDEQ | Same as
MDEQ | | | MAQCHEM | Aqueous phase transformation (0 = not modeled, 1 = aqueous phase reactions) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MWET | Model wet
deposition?
(1 = yes) | 1 | 1 | | Same as
MDEQ | Same as
MDEQ | Same
as
MDEQ | | MDRY | Model dry
deposition?
(1 = yes) | 1 | 1 | | Same as
MDEQ | Same as
MDEQ | Same
as
MDEQ | | MDISP | Method for dispersion coefficients (2 = internally calc. Using micromet var.; 3 = PG & MP) | 3 | 3 | | Same as
MDEQ | Same as
MDEQ | 2 | | MTURBVW | Turbulence characterization (only if MDISP = 1 or 5) {see previous variable} | 3 | Not Used | | | Same as
MDEQ | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|---|--|---|------|-----------------|--|--------------------| | MDISP2 | Backup coefficients (only if MDISP = 1 or 5) {see previous variable} | 3 | Not Used | | | Same as
MDEQ | | | MROUGH | Adjust PG for surface roughness? (0 = no) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MPARTL | Model partial plume penetration (1=yes) | 1 | 1 | | Same as
MDEQ | Same as
MDEQ | | | MTINV | Strength of temperature inversion (0 = compute from data) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MPDF | Use PDF for convective dispersion? (0 = no) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | 1 | | MSGTIBL | Use TIBL model? (allows treatment of subgrid scale coastal areas; 0 = no) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MBCON | Boundary condition concentration modeled? | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MFOG | Configure for FOG Model output? (0 = no) | 0 | 0 | | Same as
MDEQ | Same as
MDEQ | | | MREG | Regulatory default checks? (1 = yes) | 1 | 1 | | Same as
MDEQ | 0 | | | CSPEC | Names of species
modeled
(NSE names) | MESOPUFF II
must be SO ₂ ,
SO ₄ , NOx,
HNO ₃ , NO ₃ | SO ₂ , SO ₄ ,
NOx,
HNO ₃ , NO ₃ ,
others may
be included
depending
on the
source | | | SO2,
SO4,
NOX,
HNO3,
NO3,
PM25,
PM10 | | | CGRUP | Grouping of species, if any | User Defined | Not Used | | | | | | РМАР | Map Projection
(Use LCC for
source-receptor
distance >100 km) | LCC | LCC | | | Same as
MDEQ | Same
as
MDEQ | | FEAST | False Easting (if PMAP = TTM, LCC or LAZA) (km) {inconsequential} | 0 | 600 | | | 0 | 0 | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|---|---|------------------------------|------|----------|------------------------------------|--------------------| | FNORTH | False Northing
(if PMAP = TTM,
LCC or LAZA)
(km) | 0 | 0 | | | Same as
MDEQ | Same
as
MDEQ | | DATUM | Datum-region for output coordinates | WGS-G | WGS-G | | | WGS-G | NWS-
27 | | NX | Number of east-
west grid cells | <= 190 | To be determined, but <= 190 | | | 171 | 213 | | NY | Number of north-
south grid cells | <= 135 | To be determined, but <= 135 | | | 165 | 153 | | NZ | Number of vertical layers | >= 4 | 11 | | | 12 | 12 | | DGRIDKM | Grid spacing
(km) | <= 12 | 6 | | | 12 | 3 | | LSAMP | Use gridded receptors? (T = yes) {NPS receptors are discrete} | Т | F | | | T/F
(F for
Class I
Areas) | | | MESHDN | Gridded receptor
spacing =
DGRIDKM/
MESHDN | 1 | Not Used | | | | | | ICON | Output concentrations? (1 = yes) | 1 | 1 | | | | | | IDRY | Output dry deposition flux? (1 = yes) | 1 | 1 | | | 0 | | | IWET | Output wet deposition flux? (1= yes) | 1 | 1 | | | 0 | | | IVIS | Output RH for visibility calculations? (1 = yes) | 1 | 1 | | | | | | LCOMPRS | Use compression option in output? (T = yes) | Т | Т | | | | | | IMFLX | Mass Flux Across Boundary > (0 = no) | 0 | 0 | | | | | | IMBAL | Mass balance for each species? (0 = no) | 0 | 0 | | | | | | ICPRT | Print concentrations? (0 = no) {QA/QC check} | 0 | 1 | | | | | | IDPRT | Print dry deposition fluxes? (0 = no) {QA/QC check} | 0 | 1 | | | | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|---|---|--|------|----------|--|--| | IWPRT | Print wet deposition fluxes? (0 = no) {QA/QC check} | 0 | 1 | | | | | | ICFRQ | Concentration print interval (1 = hourly) {interested in 24-hr values} | 1 | 24 | | | | | | IDFRQ | Dry deposition flux print interval (1 = hourly) {interested in 24- hr values} | 1 | 24 | | | | | | IWFRQ | Wet deposition
flux print interval
(1 = hourly)
{interested in
24-hr values} | 1 | 24 | | | | | | SPECIES | Species List for
Output | All species
saved
on disk | All species
printed
and saved
on disk | | | SO2,
SO4,
NOX,
HNO3,
NO3,
PM25,
PM10 | SO2,
SO4,
NOX,
HNO3,
NO3,
PM25,
PM10 | | LDEBUG | Turn on debug
tracking?
(F = no) | F | F | | | | | | IPFDEB | First puff to track | 1 | 1 | | | | | | NPFDEB | Number of puffs to track | 1 | 1 | | | | | | NN1 | Met. period (hour)
to start
debug output | 1 | 1 | | | | | | NN2 | Met. period (hour)
to end
debug output | 10 | 10 | | | | | | NHILL | Number of subgrid
terrain (hill)
features | 0 | 0 | | | Same as
MDEQ | | | NCTREC | Number of special complex terrain receptors | 0 | 0 | | | Same as
MDEQ | | | MHILL | Terrain and CTSG Receptor data for CTSG hills input in CTDM format ? (1 = Hill and rec. data read from files, 2 = hill data created) {not used since NHILL = 0} | 1 | 0 | | | 2 | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|--|---|--|------|----------|-----------------|-----------------| | XHILL2M | Factor to convert horizontal dimensions to meters {not used since NHILL = 0} | 1 | 0 | | | 1 | | | ZHILL2M | Factor to convert vertical dimensions to meters {not used since NHILL = 0} | 1 | 0 | | | 1 | | | XCTDMKM | X-origin of CTDM
system relative to
CALPUFF
coordinate system
(km) | 0.0E00 | 0.0E00 | | | Same as
MDEQ | | | YCTDMKM | Y-origin of CTDM
system relative to
CALPUFF
coordinate system
(km) | 0.0E00 | 0.0E00 | | | Same as
MDEQ | | | DIFFUSI | VITY (cm²/s) | SO ₂ = 0.1509
NOx = 0.1656
HNO ₃ = 0.1628 | $SO_2 =$ 0.1509 $NOx =$ 0.1656 $HNO_3 =$ 0.1628 | | | Same as
MDEQ | | | ALPI | HA STAR | $SO_2 = 1000.$
NOx = 1.
$HNO_3 = 1.$ | $SO_2 = 1000.$
NOx = 1.
$HNO_3 = 1.$ | | | Same as
MDEQ | | | REA | CTIVITY | $SO_2 = 8.$
NOx = 8.
$HNO_3 = 18.$ | $SO_2 = 8.$
NOx = 8.
$HNO_3 = 18.$ | | | Same as
MDEQ | | | MESOPHYLL R | ESISTANCE (s/cm) | $SO_2 = 0.$
NOx = 5.
$HNO_3 = 0.$ | $SO_2 = 0.$
NOx = 5.
$HNO_3 = 0.$ | | | Same as
MDEQ | | | HENRY'S LA' | W COEFFICIENT | SO ₂ = 0.04
NOx = 3.5
HNO ₃ =
0.00000008 | $SO_2 = 0.04$
NOx = 3.5
$HNO_3 =$
0.00000008 | | | Same as
MDEQ | | | | C MASS MEAN
ER (microns) | $SO_4 = 0.48$
$NO_3 = 0.48$
PMF = 0.48
PMC = 0.48
EC = 0.48 | $SO_4 = 0.48$
$NO_3 = 0.48$
PMF = 0.48
PMC = 0.48
EC = 0.48
OC = 0.48
(will vary
with source) | | | IWAQM | | | | IC STANDARD
ON (microns) | $SO_4 = 2.$
$NO_3 = 2.$
PMF = 2.
PMC = 2.
EC = 2. | $SO_4 = 2.$ $NO_3 = 2.$ $PMF = 2.$ $PMC = 2.$ $EC = 2.$ $OC = 2.$ (will vary with source) | | | IWAQM | | | RCUTR | Reference cuticle resistance (s/cm) | 30. | 30. | | | Same as
MDEQ | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |--------------------------|--|---|--|------|----------|-----------------|------------------------------------| | RGR | Reference ground resistance (s/cm) | 10. | 10. | | | Same as
MDEQ | | | REACTR | Reference reactivity | 8 | 8 | | | Same as
MDEQ | | | NINT | Number of particle-size intervals | 9 | 9 | | | Same as
MDEQ | | | IVEG | Vegetative state
(1 = active and
unstressed) | 1 | 1 | | | Same as
MDEQ | 2
(active
+
stresse
d) | | Scavenging (
Precipit | Coefficient, Liquid
ation (sec) ⁻¹ | $SO_2 = 3.0E-05$
$SO_4 = 1.0E-04$
$HNO_3 = 6.0E-05$
$NO_3 = 1.0E-04$
PMF = 1.0E-04
PMC = 1.0E-04
EC = 1.0E-04 | $SO_2 =$ $3.0E-05$ $SO_4 =$ $1.0E-04$ $HNO_3 =$ $6.0E-05$ $NO_3 =$ $1.0E-04$ $PMF =$ $1.0E-04$ $PMC =$ $1.0E-04$ $EC =$ $1.0E-04$ $OC =$ $1.0E-04$ (will vary with source) | | | IWAG | ΩМ | | Pred | coefficient, Frozen
cipitation
sec ⁻¹) | $SO_2 = 0.0E-00$
$SO_4 = 3.0E-05$
$HNO_3 = 0.0E-00$
$NO_3 = 3.0E-05$
PMF = 3.0E-05
PMC = 3.0E-05
EC = 3.0E-05 | $SO_2 =$ $0.0E-00$ $SO_4 =$ $3.0E-05$ $HNO_3 =$ $0.0E-00$ $NO_3 =$ $3.0E-05$ $PMF =$ $3.0E-05$ $PMC =$ $3.0E-05$ $EC =$ $3.0E-05$ $OC =$ $3.0E-05$ (will vary with source) | | | IWAG | QΜ | | MOZ | Ozone
background
(1 = read from
ozone.dat) | 1 | 1 | | | | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|---|---|---|------|---|---|-----------------| | ВСКО3 | Ozone default
(ppb)
for missing data | 12 * 80 | Will use monthly ozone data from Yellowstone and Glacier National Parks | | Stations
+ 60 | 3*26.8,
3*36.7,
3*34.9,
3*23.2 | 12*30 | | вскинз | Ammonia
background
(ppb)
{North Dakota
data} | 12 * 10 | 1.22, 1.23,
1.60, 1.94,
2.29, 1.63,
1.65, 1.69,
0.98, 1.04,
1.37, 1.06 | | Aug. =
1.6, Oct.
= 0.5,
Sept. =
0.8 | 3*0.5,
3*0.9.
3*1.0,
3*0.9 | 12*2 | | RNITE1 | Nighttime SO₂
loss rate
(%/hr) | 0.2 | 0.2 | | | Same as
MDEQ | | | RNITE2 | Nighttime NOx
loss rate
(%/hr) | 2.0 | 2.0 | | | Same as
MDEQ | | | RNITE3 | Nighttime HNO ₃
loss rate
(%/hr) | 2.0 | 2.0 | | | Same as
MDEQ | | | MH202 | H2O2 data input option (MAQCHEM = 1; 0 = monthly background, 1 = read hourly conc. file) {using MAQCHEM = 0} | 0 | Not Used | | | 1 | | | BCKH2O2 | Monthly H2O2
concentrations
(ppb) | 12 * 1.0 | 12 * 1.0 | | | Not Used;
MAQ-
CHEM
= 0 | | | BCKPMF | Fine particulate concentration (µg/m³) (used if MCHEM = 4 with VOC emissions) {using MAQCHEM = 1; no VOC emissions} | 12 * 1.00 | Not Used | | | Same as
MDEQ | | | OFRAC | Organic fraction of fine particulate (Used with VOC emissions) {no VOC emissions} | 2*0.15, 9*0.20,
1*0.15 | Not Used | | | Same as
MDEQ | | | VCNX | VOC / NOX ratio (after reaction; Used with VOC emissions) {no VOC emissions} | 12 * 50.00 | Not Used | | | Same as
MDEQ | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|---|---|-----------------------------|------|----------|-----------------|-----------------| | SYTDEP | Horizontal size
(m) to switch
to time
dependence | 550. | 550. | | | Same as
MDEQ | | | MHFTSZ | Use Heffter for vertical dispersion (0 = no) | 0 | 0 | | | Same as
MDEQ | | | JSUP | PG Stability class above mixed layer | 5 | 5 | | | Same as
MDEQ | | | CONK1 | Vertical stable
dispersion
constant
(Eq. 2.7-3) | 0.01 | 0.01 | | | Same as
MDEQ | | | CONK2 | Vertical neutral
dispersion
constant
(Eq. 2.7-4) | 0.1 | 0.1 | | | Same as
MDEQ | | | TBD | Factor for determining Transition-point from Schulman- Scire to Huber- Snyder Building Downwash scheme | 0.5 | 0.5 | | | Same as
MDEQ | | | IURB1 | Beginning urban land use type | 10 | 10 | | | Same as
MDEQ | | | IURB2 | Ending urban land use type | 19 | 19 | | | Same as
MDEQ | | | XMXLEN | Maximum slug
length in units of
DGRIDKM | 1 | 1 | | | Same as
MDEQ | | | XSAMLEN | Maximum puff
travel distance per
sampling step
(units of
DGRIDKM) | 1 | 1 | | | Same as
MDEQ | | | MXNEW | Maximum number of puffs per hour | 99 | 99 | | | Same as
MDEQ | | | MXSAM | Maximum
sampling
steps per hour | 99 | 99 | | | Same as
MDEQ | | | NCOUNT | Number of iterations used when computing the transport wind for a sampling step that includes gradual rise (for CALMET and PROFILE winds) | 2 | 2 | | | Same as
MDEQ | | | SYMIN | Minimum lateral
dispersion of new
puff/slug
(m) | 1.0 | 1.0 | | | Same as
MDEQ | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|---|---|--|------|----------|-----------------|-----------------| | SZMIN | Minimum vertical
dispersion of new
puff/slug
(m) | 1.0 | 1.0 | | | Same as
MDEQ | | | SVMIN | Default minimum turbulence | 6 * 0.50 | 6 * 0.50 | | | Same as
MDEQ | | | SWMIN | velocities for
stability classes
A-F
(m/s) | 0.20, 0.12, 0.08,
0.06, 0.03,
0.016 | 0.20, 0.12,
0.08,
0.06, 0.03,
0.016 | | | Same as
MDEQ | | | CDIV(2) | Divergence
criterion for dw/dz
(s ⁻¹) | 0.0, 0.0 | 0.0, 0.0 | | | Same as
MDEQ | | | WSCALM | Minimum non-
calm wind speed
(m/s) | 0.5 | 0.5 | | | Same as
MDEQ | | | XMAXZI | Maximum mixing
height
(m) | 3000 | 2800 | | | 3448 | 4000 | | XMINZI | Minimum mixing
height
(m) | 50 | 50 | | | Same as
MDEQ | | | WSCAT | Upper bounds of first 5 wind speed classes (m/s) | 1.54, 3.09, 5.14,
8.23, 10.8 | 1.54, 3.09,
5.14,
8.23, 10.8 | | | Same as
MDEQ | | | PLX0 | Wind speed
power-law
exponents
(rural) | 0.07, 0.07, 0.10,
0.15, 0.35, 0.55 | 0.07, 0.07,
0.10,
0.15, 0.35,
0.55 | | | Same as
MDEQ | | | PTG0 | Potential
temperature
gradients PG
E and F
(deg K/m) | 0.020, 0.035 | 0.020, 0.035 | | | Same as
MDEQ | | | PPC | Plume path coefficients for stability classes A-F (only if MCTADJ=3) | 0.5, 0.5, 0.5,
0.5,
0.35, 0.35 | 0.5, 0.5, 0.5,
0.5,
0.35, 0.35 | | | Same as
MDEQ | | | SL2PF | Maximum Sy/puff
length | 10 | 10 | | | Same as
MDEQ | | | NSPLIT | Number of puffs
when puffs split
{As recommended
by
EPA Region VIII,
Kevin Golden,
2/23/06} | 3 | 2 | | | IWAQM | | | IRESPLIT | Hours when puff are eligible to split | 0, except hr 17
= 1 | 0, except hr
17 = 1 | | | hr = 18 | All
Hours | | ZISPLIT | Split allowed last
hour's mixing
height exceeds
minimum value
(m) | 100 | 100 | | | Same as
MDEQ | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|--|---|-----------------------------|------|----------|-----------------|--------------------| | ROLDMAX | Previous Max
mixing
height/current
mixing height
ratio, must be less
than this value to
allow puff split | 0.25 | 0.25 | | | Same as
MDEQ | 0.33 | | NSPLITH | Number of puffs
that result
every time a
puff is split | 5 | 5 | | | Same as
MDEQ | Same
as
MDEQ | | SYSPLITH | Min. Sy of puff before it splits | 1 | 1 | | | Same as
MDEQ | Same
as
MDEQ | | SHSPLITH | Minimum puff elongation rate (SYSPLITH/hr) due to wind shear, before it may be split | 2.0 | 2.0 | | | Same as
MDEQ | Same
as
MDEQ | | CNSPLITH | Minimum concentration (g/m^3) of each species in puff before it may be split (Array of NSPEC values or a single value for all species) | 1.0E-07 | 1.0E-07 | | | Same as
MDEQ | Same
as
MDEQ | | EPSSLUG | Fractional convergence criterion for numerical SLUG sampling integration | 1.0E-04 | 1.0E-04 | | | Same as
MDEQ | | | EPSAREA | Fractional
convergence
criterion for
numerical AREA
source integration | 1.0E-06 | 1.0E-06 | | | Same as
MDEQ | | | DSRISE | Trajectory step-
length used for
numerical rise
integration
(m) | 1 | 1 | | | Same as
MDEQ | | | NPT1 | Number of point sources | No Default | To be determined | | | N/A | | | IPTU | Units of emission rates (1 = g/s) | 1 | 1 | | | Same as
MDEQ | | | NSPT1 | Number of point source-species combinations | 0 | 0 | | | Same as
MDEQ | | | NPT2 | Number of point sources with fully variable emission rates | 0 | 0 | | | Same as
MDEQ | | | CALPUFF
Variable | Description | IWAQM
Recommended
Value or
Default | MDEQ
Value To
Be Used | FLAG | Colorado | Minnesota | North
Dakota | |---------------------|---|---|-----------------------------|------|----------|-----------|-----------------| | IVARY | IVARY determines the type of variation, and is source-specific: (Default: 0 = constant) | 0 | 0 | | | | | **Table 3. POSTUTIL Inputs.** | POSTUTIL
Variable | Description | Recomme
nded
Value or
Default | MDEQ Value
To Be Used | Colorado | Minnesota | North
Dakota | |----------------------|---|--|---|--|-------------------------------------|--------------------| | MNITRATE | Repartition HNO ₃ /NO ₂ $(0 = no)$ {1 = yes for all sources listed} | 0 | 1 | Same as
MDEQ | Same as
MDEQ | Same
as
MDEQ | | ВСКNН3 | Background ammonia;
same as monthly values used
in CALPUFF
{North Dakota data} | 10 | 1.22, 1.23,
1.60, 1.94,
2.29, 1.63,
1.65, 1.69,
0.98, 1.04,
1.37, 1.06 | NE CO =
44, NW
CO =
1.0, SE =
10 | 3*0.5,
3*0.9,
3*1.0,
3*0.9 | | Table 4. CALPOST Inputs. | CALPOST
Variable | Description | Recommended
Value or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minne-
sota | North
Dakota | |---------------------|--|---------------------------------|--------------------------------|------|----------|--------------------|--------------------| | METRUN | Run period (0 = explicitly defined below; 1 = run all periods in CALPUFF data file(s)) | 0 | 0 | | | Same
as
MDEQ | | | ILAYER | Layer/deposition code
(1 for CALPUFF
concentrations) | 1 | 1 | | | Same
as
MDEQ | | | A and B | Scaling factors of the form: X(new) = X(old) * A + B (NOT applied if A = B = 0.0) | A = 0.0
B = 0.0 | A = 0.0
B = 0.0 | | | Same
as
MDEQ | Same
as
MDEQ | | LBACK | Add hourly background concentrations/fluxes? | F | F | | | Same
as
MDEQ | Same
as
MDEQ | | LG | Gridded receptors processed? | F | F | | | Same
as
MDEQ | | | LD | Discrete receptors processed? | F | Т | | | Same
as
MDEQ | | | LCT | CTSG Complex terrain receptors processed? | F | F | | | Same
as
MDEQ | | | CALPOST
Variable | Description | Recommended
Value or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minne-
sota | North
Dakota | |---------------------|--|---------------------------------|--------------------------------|--------------------|-----------------|--------------------|--------------------| | LDRING | Report results by receptor ring? | F | F | | | Same
as
MDEQ | | | NDRECP | Select specific receptors
(-1 = process all) | -1 | -1 | | | Same
as
MDEQ | | | IBGRID | X index of LL corner (Entire grid is processed if IBGRID=JBGRID=IEGRI D=JEGRID=-1) {Class I area receptors are discrete} | -1 | Not
Used | | | -1 | | | JBGRID | Y index of LL corner (-1 = use all gridded receptors) {Class I area receptors are discrete} | -1 | Not
Used | | | -1 | | | IEGRID | X index of UR corner (-1 = use all gridded receptors) {Class I area receptors are discrete} | -1 | Not
Used | | | -1 | | | JEGRID | Y index of UR corner (-1 = use all gridded receptors) {Class I area receptors are discrete} | -1 | Not
Used | | | -1 | | | NGONOFF | Number of gridded receptor rows to identify specific gridded receptors to process | 0 | 0 | | | Same
as
MDEQ | | | NGXRECP | Specific gridded receptors included/excluded (1 = gridded receptors processed) | 1 | 1 | | | | | | RHMAX | Maximum relative humidity (%) used in particle growth curve {not used with Method 6} | 95 | Not
Used | 98 | | Same
as
MDEQ | 95 | | LVSO4 | Include modeled SULFATE in computing the light extinction? | Т | Т | | Same as
MDEQ | Same
as
MDEQ | Same
as
MDEQ | | LVNO3 | Include NITRATE? | Т | Т | Same
as
MDEQ | Same as
MDEQ | Same
as
MDEQ | Same
as
MDEQ | | LVOC | Include
ORGANIC CARBON? | Т | Т | Same
as
MDEQ | Same as
MDEQ | F | F | | LVPMC | Include
COARSE PARTICLES? | Т | Т | Same
as
MDEQ | Same as
MDEQ | Same
as
MDEQ | Same
as
MDEQ | | LVPMF | Include
FINE PARTICLES? | Т | Т | Same
as
MDEQ | Same as
MDEQ | Same
as
MDEQ | Same
as
MDEQ | | LVEC | Include
ELEMENTAL
CARBON? | Т | Т | Same
as
MDEQ | Same as
MDEQ | F | F | | CALPOST
Variable | Description | Recommended
Value or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minne-
sota | North
Dakota | |---------------------|--|---------------------------------|---|------------------------------|-----------------|--------------------|--------------------| | LVBK | Include background
when ranking for TOP-
N, TOP-50, and
Exceedance tables? | Т | F | Same
as
MDEQ | Same as
MDEQ | Т | Same
as
MDEQ | | SPECPMC | Species name used for COARSE particulates in MODEL.DAT file | PMC | PMC | | | Same
as
MDEQ | | | SPECPMF | Species name used for
FINE particulates in
MODEL.DAT file | PMF | PMF | | | Same
as
MDEQ | | | MVISBK | Method used for background light extinction (for BART-related modeling, Method 6 should be used) | 2 | 6 | Screen -ing = 6 Refine d = 2 | Same as
MDEQ | Same
as
MDEQ | Same
as
MDEQ | | вехтвк | Background light extinction | 0.0 | 0.0 | | | | | | RHFRAC | Percentage of particles
affected by relative
humidity {used if
MVISBK = 1} | 0.0 | Not
Used | | | | | | RHFAC | Monthly relative humidity adjustment factors for adjusting extinction coefficients | No Default | Will vary with Class I Area (list of 12 values) | | | Same
as
MDEQ | | | BKSO4 | Monthly background concentrations of ammonium sulfate (μg/m³) | No Default | Will vary with Class I Area (list of 12 values) | | | Same
as
MDEQ | | | BKNO3 | Monthly background concentrations of ammonium nitrate (μg/m³) | No Default | Will vary with Class I Area (list of 12 values) | | | Same
as
MDEQ | | | ВКРМС | Monthly background concentrations of coarse particulates (µg/m³) | No Default | Will vary with Class I Area (list of 12 values) | | | Same
as
MDEQ | | | вкос | Monthly background concentrations of organic carbon (µg/m³) | No Default | Will
vary
with
Class I | | | Same
as
MDEQ | | | CALPOST
Variable | Description | Recommended
Value or Default | MDEQ
Value
To Be
Used | FLAG | Colorado | Minne-
sota | North
Dakota | |---------------------|---|---------------------------------|---|------|-----------------|--------------------|--------------------| | | | | Area
(list of
12
values) | | | | | | BKSOIL | Monthly background concentrations of soil (µg/m³) | No Default | Will vary with Class I Area (list of 12 values) | | | Same
as
MDEQ | | | BKEC | Monthly background
concentrations of
elemental carbon
(µg/m³) | No Default | Will vary with Class I Area (list of 12 values) | | | Same
as
MDEQ | | | BEXTRAY | Extinction due to
Rayleigh scattering
(1/Mm) | 10.0 | 10.0 | | Same as
MDEQ | Same
as
MDEQ | Same
as
MDEQ | | IPRTU | Output units for concentration and deposition {Visibility: extinction expressed in 1/Megameters and IPRTU is ignored} | 3 = μg/m³,
μg/m²/s | Not
Used | | | 3 | | | L1HR | 1-hr averages reported
{not interested in
1-hr values} | Т | F | | | | | | L3HR | 3-hr averages reported
{not interested in
3-hr values} | Т | F | | | | | | L24HR | 24-hr averages reported | Т | Т | | | | | | LRUNL | Run-length averages reported {not interested in these averages} | Т | F | | | | |